# Lab: Conservation of Mass

- 1. What is the law of conservation of mass?
- 2. Why is it hard to prove the law when a gas is produced?
- 3. What is the difference between an "open" system & a "closed" system?

# Reaction #1: Baking Soda & Vinegar

Materials: 2 beakers, balance, vinegar, baking soda, plastic bag

#### Part 1: Open System

- 1. Calibrate, or set the balance to 0.
- 2. Fill a beaker with 20 mL of vinegar.
- 3. Add one spoonful of baking soda into the second beaker.
- 4. Place both beakers on the balance & record the starting mass.
- 5. Dump the baking soda into the beaker. Do not stir.
- 6. Place the empty beaker back on the balance. Record the ending mass, including both beakers.
- 7. Calculate the amount of mass changed.

#### Part 2: Closed System

- 8. Clean & dry both beakers.
- 9. Fill a clean beaker with 30 mL of vinegar.
- 10. Add one spoonful of baking soda into a clean plastic bag.
- 11. Gently place the beaker with vinegar in the plastic bag. Do NOT spill the vinegar!
- 12. Try to push all air out of the bag. *Seal* the bag & place it on the balance without spilling the vinegar. Record the starting mass.
- 13. Without opening the bag, tip the beaker, mixing the vinegar with the baking soda.
- 14. Still without opening the bag, record the ending mass of the contents of the plastic bag.
- 15. Calculate the amount of mass changed.

#### Analysis:

- 1. State the reactants & products of this reaction. (Use your lecture notes!)
  - The reactants are \_\_\_\_\_\_ & \_\_\_\_\_.
  - The products are \_\_\_\_\_\_, \_\_\_\_\_ & \_\_\_\_\_\_
- 2. Compare part 1, the open system, to part 2, the closed system. What was the same? What was different?

3. How does the conservation of mass relate to this activity?

| Baking Soda & Vinegar:<br>Open System |
|---------------------------------------|
| Starting mass: g                      |
| Ending mass: g                        |
| Amount Changed: g                     |

| Baking Soda & Vinegar:<br>Closed System |  |  |  |  |  |
|-----------------------------------------|--|--|--|--|--|
| Starting mass: g                        |  |  |  |  |  |
| Ending mass: g                          |  |  |  |  |  |
| Amount Changed: g                       |  |  |  |  |  |
|                                         |  |  |  |  |  |



# Reaction #2: Water & Effervescent Tablet

### Materials: 1 Erlenmeyer flask, balance, water, 2 effervescent tablets, balloon

## Part 1: Open System

- 1. Confirm that the balance is still calibrated.
- 2. Fill a clean Erlenmeyer flask with 50 mL of water.
- 3. Place the flask & an effervescent tablet on the balance & record the starting mass.
- 4. Place the tablet into the flask of water. Swirl & wait 3 minutes.
- 5. Once the reaction is complete, record the ending mass.
- 6. Calculate the amount of mass changed.

### Part 2: Closed System

- 7. Thoroughly clean the flask & fill with 50 mL of water
- 8. Place an effervescent tablet into a balloon. You may need to break the tablet in half.
- 9. Place the balloon around the rim of the flask, but do not let the tablet fall into the water.
- 10. Find & record the starting mass of the flask & balloon with tablet.
- 11. Lift the balloon, causing the tablet to fall into the water. Swirl & wait 3 minutes.
- 12. Once the reaction is complete, record the ending mass.
- 13. Calculate the amount of mass changed.

#### Analysis:

1. As you know, scientists write chemical reactions like mathematical formulas. The reactions are on the left of the arrow & the products are on the right of the arrow.

#### $Reactants \rightarrow Products$

The effervescent tablet contains a chemical called sodium bicarbonate (baking soda!). This chemical reacts with water according to the following reaction:

# $\mathbf{H_{2}0}+\mathbf{NaHCO_{3}}\rightarrow\mathbf{NaOH}+\mathbf{CO_{2}+H_{2}0}$

a. Count the number of each element, on each side of the equation, & record below. For example, there are 3 hydrogens on the reactant side.

| Element   | Hydrogen | Carbon | Oxygen | Sodium |
|-----------|----------|--------|--------|--------|
| Reactants | 3        |        |        |        |
| Products  |          |        |        |        |

- b. Is this reaction "balanced"? Explain.
- 2. Compare part 1 of this reaction, the open system, to part 2, the closed system. What did you notice?
- 3. How does this reaction compare to the reaction of baking soda & vinegar?

| Water & Effervescent Tablet<br>Open System |   |
|--------------------------------------------|---|
| Starting mass: g                           |   |
| Ending mass: g                             |   |
| Amount Changed: g                          |   |
|                                            | - |

1

| Water & Effervescent Tablet<br>Closed System |  |
|----------------------------------------------|--|
| Starting mass: g                             |  |
| Ending mass: g                               |  |
| Amount Changed: g                            |  |
|                                              |  |